Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing
نویسندگان
چکیده
In the quest of finding the ideal polymer optical fiber (POF) for Bragg grating sensing, we have fabricated and characterized an endlessly single mode microstructured POF (mPOF). This fiber is made from cyclo-olefin homopolymer Zeonex grade 480R which has a very high glass transition temperature of 138 °C and is humidity insensitive. It represents a significant improvement with respect to the also humidity insensitive Topas core fibers, in that Zeonex fibers are easier to manufacture, has better transmittance, higher sensitivity to temperature and better mechanical stability at high temperature. Furthermore, Zeonex has very good compatibility with PMMA in terms of dilatation coefficients for co-drawing applications. The Zeonex mPOF has a core and cladding diameter of 8.8 μm and 150 μm, respectively, with a hole to pitch ratio of 0.4 and a minimum propagation loss of 2.34 ± 0.39 dB/m at 690.78 nm. We have also inscribed and characterized fiber Bragg gratings (FBGs) in Zeonex mPOFs in the low loss 850 nm spectral band. ©2016 Optical Society of America OCIS codes: (130.5460) Polymer waveguides, (060.2280) Fiber design and fabrication, (060.2270) Fiber characterization, (060.3735) Fiber Bragg gratings, (060.2370) Fiber optics sensors. References and links 1. D. J. Webb and K. Kalli, “Polymer Fiber Bragg Gratings,” in Fiber Bragg Grating Sensors: Thirty Years From Research to Market, A. Cusano, A. Cutolo, and J. Albert, eds. (Bentham Science, 2010). 2. D. J. Webb, “Fiber Bragg grating sensors in polymer optical fibers,” Meas. Sci. Technol. 26(9), 092004 (2015). 3. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in fewand single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005). 4. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber Bragg grating based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012). 5. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005). 6. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007). 7. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dualcore microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011). 8. H. U. Hassan, K. Nielsen, S. Aasmul, and O. Bang, “Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors,” Biomed. Opt. Express 6(12), 5008– 5020 (2015). 9. C. Broadway, D. Gallego, G. Woyessa, A. Pospori, G. Carpintero, O. Bang, K. Sugden, and H. Lamela, “FabryPerot microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9531, 953116 (2015). 10. S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010). Vol. 7, No. 1 | 1 Jan 2017 | OPTICAL MATERIALS EXPRESS 286 #278337 http://dx.doi.org/10.1364/OME.7.000286 Journal © 2016 Received 10 Oct 2016; revised 16 Dec 2016; accepted 18 Dec 2016; published 23 Dec 2016 11. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007). 12. H. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” PhD Thesis, Lausanne, EPFL (2008). 13. C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010). 14. C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE 7503, 750380 (2009). 15. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016). 16. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011). 17. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in Topas cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011). 18. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013). 19. G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode stepindex polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016). 20. G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001). 21. A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for hightemperature resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016). 22. S. Roy, C. Y. Yue, Z. Y. Wang, and L. Anand, “Thermal bonding of microfluidic devices: Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers,” Sens. Actuators B Chem. 161(1), 1067– 1073 (2012). 23. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011). 24. S. G. Leon-Saval, R. Lwin, and A. Argyros, “Multicore composite single-mode polymer fiber,” Opt. Express 20(1), 141–148 (2012). 25. A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, E. M. Pogson, E. Constable, R. A. Lewis, and B. T. Kuhlmey, “Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range,” Opt. Express 19(17), 16480–16490 (2011). 26. N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber draw double split ring resonators in the terahertz range,” Opt. Mater. Express 2(9), 1254–1259 (2012). 27. http://www.zeonex.com/optics.aspx. 28. Topas Advanced Polymers Inc, “Data Sheet Topas 5013S-04,” (Topas Advanced Polymers Inc., 2015), http://www.topas.com/sites/default/files/TDS_5013S_04_e_1.pdf. 29. É. Torres, M. N. Berberan-Santos, and M. J. Brites, “Synthesis, photophysical and electrochemical properties of perylene dyes,” Dyes Pigments 112, 298–304 (2015). 30. T. Bremner, A. Rudin, and D. G. Cook, “Melt Flow Index Values and Molecular Weight Distributions of Commercial Thermoplastics,” J. Appl. Polym. Sci. 41(78), 1617–1627 (1990). 31. A. Argyros, “Microstructured polymer optical fibers,” J. Lightwave Technol. 27(11), 1571–1579 (2009). 32. B. T. Kuhlmey, R. C. McPhedran, and C. Martijn de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett. 27(19), 1684–1686 (2002). 33. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997). 34. A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of Topas and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012). 35. A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012). 36. I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014). 37. I.-L. Bundalo, K. Nielsen, and O. Bang, “Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers,” Opt. Express 23(3), 3699–3707 (2015). 38. R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015). 39. K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007). 40. A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011). 41. I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010). Vol. 7, No. 1 | 1 Jan 2017 | OPTICAL MATERIALS EXPRESS 287
منابع مشابه
High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees.
We present the fabrication and characterization of fiber Bragg gratings (FBGs) in an endlessly single-mode microstructured polymer optical fiber (mPOF) made of humidity-insensitive high-Tg TOPAS cyclic olefin copolymer. The mPOF is the first made from grade 5013 TOPAS with a glass transition temperature of Tg = 135°C and we experimentally demonstrate high strain operation (2.5%) of the FBG at 9...
متن کاملHumidity insensitive TOPAS polymer fiber Bragg grating sensor.
We report the first experimental demonstration of a humidity insensitive polymer optical fiber Bragg grating (FBG), as well as the first FBG recorded in a TOPAS polymer optical fiber in the important low loss 850 nm spectral region. For the demonstration we have fabricated FBGs with resonance wavelength around 850 nm and 1550 nm in single-mode microstructured polymer optical fibers made of TOPA...
متن کاملUltrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing.
We present fiber Bragg grating pressure sensors in air-hole microstructured fibers for high-temperature operation above 800 degrees C. An ultrafast laser was used to inscribe Type II grating in two-hole optical fibers. The fiber Bragg grating resonance wavelength shift and peak splits were studied as a function of external hydrostatic pressure from 15 psi to 2000 psi. The grating pressure senso...
متن کاملFabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors
Here we present the fabrication of a solid-core microstructured polymer optical fiber (mPOF) made of polycarbonate (PC), and report the first experimental demonstration of a fiber Bragg grating (FBG) written in a PC optical fiber. The PC used in this work has a glass transition temperature of 145°C. We also characterize the mPOF optically and mechanically, and further test the sensitivity of th...
متن کامل870nm Bragg grating in single mode TOPAS microstructured polymer optical fibre [7753-166]
We report the fabrication and characterization of a fiber Bragg grating (FBG) with 870 nm resonance wavelength in a single-mode TOPAS microstructured polymer optical fiber (mPOF). The grating has been UV-written with the phasemask technique using a 325 nm HeCd laser. The static tensile strain sensitivity has been measured as 0.64 pm/μstrain, and the temperature sensitivity was -60 pm/C. This is...
متن کامل